
International Journal of Research in Advent Technology, Vol.2, Issue 4, April 2014

E-ISSN: 2321-9637

311

A Strategic Implementation in Incremental High Utility
Pattern Mining Algorithm
Mr. Chetan V. Chaudhari1, Prof. Sandeep Khanna2

Research Scholar1,
Dr. V.B.Kolte COE, Malkapur1
chaudharichetanv@gmail.com

Department of Computer Engineering2

Dr. V.B.Kolte COE, Malkapur 2

sandeepietse@gmail.com2

Abstract In recent years, the problem of high utility pattern mining become one of the most important research area
in data mining. The existing high utility mining algorithm generates large number of candidate itemsets, which takes
much time to find utility value of all candidate itemsets, especially for dense datasets. In this paper we are
implementing two more strategies in IHUP(Incremental High Utility Pattern mining) algorithm to further reduce
number of PHUIs(Potentially High Utility Itemsets) and to reduce execution time. This algorithm with two
strategies is compared with other existing algorithms in various aspects. Experimental results show that the proposed
algorithms reduce the number of candidates effectively.

Keywords— IHUP, PHUIs, Dense Database.

1. INTRODUCTION

Extensive studies have been proposed for
mining frequent patterns. One of the well-known
algorithms for mining association rules is Apriori,
which is the pioneer for efficiently mining
association rules from large databases. Pattern
growth-based association rule mining algorithms
such as FP-Growth were afterward proposed. In the
framework of frequent itemset mining, the
importance of items to users is not considered. Thus,
the topic called weighted association rule mining was
brought to attention. Although weighted association
rule mining considers the importance of items,
quantities in transactions are not taken into
considerations yet. Thus, the issue of high utility
itemset mining is raised and many studies have
addressed this problem. Liu et al. proposed an
algorithm named Two- Phase which is mainly
composed of two mining phases. It still generate
many HTWUIs.

Although two-phase algorithm reduces
search space by using TWDC(Transaction Weighted
Downward Closure) property, it still generates too
many candidates to obtain HTWUIs and requires

multiple database scans. In phase I, to efficiently
create HTWUIs and several times avoid scanning
database, Ahmed discovered a IHUP tree-based
algorithm. An IHUP was one of the effective
algorithm to create utility itemsets.

IHUP algorithm has three stages:
1) construction of IHUP-Tree
2) generation of HTWUIs, and
3) Identification of high utility itemsets.

In stage 1, items are rearranged
(lexicographic order) in a fixed order, support
descending order or Transaction Weighted Utility
descending order. after rearrangement transactions
are feed into an IHUP-Tree.

In stage 2, HTWUIs are created from the
IHUP-Tree by applying FP-Growth [14].

For the performance result of algorithm, the
number of generated HTWUIs is a major issue. Due
to that our aim is to reducing Itemset by several
strategies. The number of created candidates can be
highly minimized in phase I and high utility itemsets
can be identified more efficiently in phase II by
applying the proposed strategies.[17]

International Journal of Research in Advent Technology, Vol.2, Issue 4, April 2014

E-ISSN: 2321-9637

312

 2. RELATED WORK

2.1 High Utility Itemset Mining

 In some applications such as transaction
databases, though weighted association rule mining
considers the importance of items, items’ quantities
in transactions are not taken into considerations yet.
Thus, the issue of high utility itemset mining is
raised. Liu et al. proposed an algorithm named Two-
Phase which is mainly composed of two mining
phases. But it generates too many candidates to
obtain high transaction weighted utility itemsets and
requires multiple database scans.

 2.1.1 IHUP algorithms

 Another tree based algorithm was proposed,
named IHUP [3] to efficiently generate HTWUIs and
avoid multiple time database scanning. It uses a tree
based structure IHUP-Tree [3] to maintain the
information about itemsets and their utilities. It first
generate IHUP tree and then generate HTWUIs from
tree and at last performs mining on that itemset. To
perform this operation it uses two database scan. In
first scan it generates tree and during second scan it
uses FP-Growth algorithm.

However this algorithm also generates too
many candidates. Hence also require more execution
time. Hence we include a new UP-Tree structure and
applies various strategies on IHUP algorithm [3] to
reduce HTWUIs(High Transaction Weighted Utility
Itemsets).

3. PROBLEM DEFINITION
 we first give some definitions and define the
problem of utility mining, and then introduce related
work in utility mining.

TID Transaction TU

T1 (A,2) (C,1) (D,9) 12

T2 (A,1) (C,10) (E,1) (G,5) 26

T3 (A,6) (B,2) (D,2) (E,1) (F,2) 36

T4 (B,1) (C,3) (D,1) (E,3) 32

T5 (B,4) (C,1) (E,4) (G,2) 12

T6 (A,2) (B,1) (C,1) (D,1) (H,1) 13

Table 1 : Database Example

Item A B C D E F G H

Profit 2 5 2 1 5 3 2 1

Table 2: Profit table
A finite set of items I ={ i1, i2, i3,…., im},

each item ip(m > p > 1) has a unit profit pr(ip). An
itemset X is a set of k distinct items {i1, i2, …., ik },

where ij I; 1 j k. k is the length of X. An

itemset with length k is called a kitemset. A
transaction database D ={T1, T2,…., Tn } contains a set

of transactions, and each transaction Td (1 d n)

has a unique identifier d, called TID. Each item ip in
transaction Td is associated with a quantity q(ip, Td),
that is, the purchased quantity of ip in Td.

Definition 1. Utility of an item ip in a transaction Td

is denoted as u(ip, Td) and defined as pr(ip) × q(ip ,
Td).
Definition 2. Utility of an itemset X in Td is denoted

as u(X, Td) and defined as u(ip, Td).

Definition 3. Utility of an itemset X in D is denoted

as u(X) and defined as u(X, Td).

Definition 4. An itemset is called a high utility
itemset if its utility is no less than a user-specified
minimum utility threshold which is denoted as
min_util. Otherwise, it is called a low-utility itemset.
Definition 5. Transaction utility of a transaction Td is
denoted as TU(Td) and defined as u(Td, Td).
Definition 6. Transaction-weighted utility of an
itemset X is the sum of the transaction utilities of all
the transactions containing X, which is denoted as

TWU(X) and defined as TU(Td).

Definition 7. An itemset X is called a high-
transaction weighted utility itemset (HTWUI) if
TWU(X) is no less than min_util.

International Journal of Research in Advent Technology, Vol.2, Issue 4, April 2014

E-ISSN: 2321-9637

313

Property 1 (Transaction-weighted downward
closure.). For any itemset X, if X is not a HTWUI,
any superset of X is a low utility itemset.

4. THE PROPOSED DATA STRUCTURE:
UP-TREE

For the performance of mining with
avoiding again and again scanning original database,
we prefer UP-Tree compact tree structure.[13] So,
transactional information and high utility itemsets are
maintained. To minimize the overestimated utilities
stored in the nodes of global UP-Tree, two stages are
used. In following sections, the elements of UP-Tree
are first defined. Next, the two strategies are
introduced. Finally, how to construct an UP-Tree
with the two strategies is illustrated in detail.[14]

4.1 The Elements in UP-Tree

In an UP-Tree, each node N consists of
N.name, N.count, N.nu, N.parent, N.hlink and a set
of child nodes. N.name is the node’s item name.
N.count is the node’s support count. N.nu is the
node’s node utility, i.e., overestimated utility of the
node. N.parent records the parent node of N. N.hlink
is a node link which points to a node whose item
name is the same as N.name. A table named header
table is employed to facilitate the traversal of UP-
Tree. In header table, each entry records an item
name, an overestimated utility, and a link. The link
points to the last occurrence of the node which has
the same item as the entry in the UP-Tree. By
following the links in header table and the nodes in
UP-Tree, the nodes having the same name can be
traversed efficiently.

In following sections, two strategies for
decreasing the overestimated utility of each item
during the construction of a global UP-Tree are
introduced.

4.1.1 Strategy DGU: Discarding Global Unpromising
Items during Constructing a Global UP-Tree

The construction of a global UP-Tree can be
performed with two scans of the original database. In
the first scan, TU of each transaction is computed. At

the same time, TWU of each single item is also
accumulated. By TWDC property, an item and its
supersets are unpromising to be high utility itemsets
if its TWU is less than the minimum utility threshold.
Such an item is called an unpromising item.

Property 2 (Antimonotonicity of unpromising
items). If iu is an unpromising item, iu and all its
supersets are not high utility itemsets.

Corollary 1. Only the supersets of promising items
are possible to be high utility itemsets.[14]

During the second scan of database,
transactions are inserted into a UP-Tree. When a
transaction is retrieved, the unpromising items should
be removed from the transaction and their utilities
should also be eliminated from the transaction’s TU
according to Property 2 and Corollary 1.

This concept forms our first strategy.

Strategy 1. DGU: Discarding global unpromising
items and their actual utilities from transactions and
transaction utilities of the database.

New TU after pruning unpromising items is called
reorganized transaction utility (RTU). RTU of a
reorganized transaction Tr is denoted as RTU(Tr). By
reorganizing the transactions, not only less
information is needed to be recorded in UP-Tree, but
also smaller overestimated utilities for itemsets are
generated. Strategy DGU uses RTU to overestimate
the utilities of itemsets instead of TWU. Since the
utilities of unpromising items are excluded, RTU
must be no larger than TWU. Therefore, the number
of PHUIs with DGU must be no more than that of
HTWUIs generated with TWU [3]. DGU is quite
effective especially when transactions contain lots of
unpromising items, such as those in sparse data sets.
Besides, DGU can be easily integrated into TWU-
based algorithms [3], [15]. Moreover, before
constructing an UP-Tree, DGU can be performed
repeatedly till all reorganized transactions contain no
global unpromising item. By performing DGU for
several times, the number of PHUIs will be reduced;
however, it needs several database scans.

International Journal of Research in Advent Technology, Vol.2, Issue 4, April 2014

E-ISSN: 2321-9637

314

4.1.2 Strategy DGN: Decreasing Global Node
Utilities during Constructing a Global UP-Tree

It is shown that the tree-based framework for high
utility itemset mining applies the divide-and-conquer
technique in mining processes. Thus, the search space
can be divided into smaller subspaces. For example,
in Fig. 1, the search space can be divided into the
following subspaces:

1. {B}’s conditional tree (abbreviated as {B}-Tree),

2. {A}-Tree without containing {B},

3. {D}-Tree without containing {B} and {A},

4. {C}-Tree without containing {B}, {A}, and {D},
and

5. {E}-Tree without containing {B}, {A}, {D}, and
{C}.

It can be observed that in the subspace {A}-Tree, all
paths are not related to {B} since the nodes {B} are
below the nodes {A} in global IHUP-Tree. In other
words, the items that are descendant nodes of the
item im will not appear in {im}- Tree; only the items
that are ancestor nodes of im will appear in {im}-Tree.
From this viewpoint, our second proposed strategy
for decreasing overestimated utilities is to remove the
utilities of descendant nodes from their node utilities
in global UP-Tree. The process is performed during
the construction of the global UP-Tree.

Strategy 2. DGN: Decreasing global node utilities
for the nodes of global UP-Tree by actual utilities of
descendant nodes during the construction of global
UP-Tree.

By applying strategy DGN, the utilities of
the nodes that are closer are further reduced. DGN is
basically suitable for the long transactional databases.
Means, the more transactional items, the more
utilities can be discarded by DGN. Our traditional
TWU mining model is not suitable for such databases
since the more items a transaction contains, the
higher TWU is. In following sections, we describe
the process of constructing a global UP-Tree with
strategies DGU and DGN.

4.2 Making a Global UP-Tree by using DGU and
DGN

The construction of a global UP-Tree by using two
database scans. In the first scan, each transaction’s
TU is computed; at the same time, each 1-item’s
TWU is also collected. Then, we can get promising
items and unpromising items. After getting all
promising items, DGU is applied. The transactions
are reorganized by pruning the unpromising items
and sorting the remaining promising items in a fixed
order. Lexicographic, support, or TWU order can be
used. Then above rearrangement is called a
reorganized transaction.[14]

CONCLUSION

 We proposed a UP Tree structure to mine
High Utility Itemsets with two strategies DGU and
DGN in IHUP Algorithm to improve mining
performance. Algorithm performed in Java and tested
on various data sets.

REFERENCES

[1] R. Agrawal and R. Srikant, “Fast Algorithms for
Mining Association Rules,” Proc. 20th Int’l
Conf. Very Large Data Bases (VLDB), pp. 487-
499, 1994.

[2] R. Agrawal and R. Srikant, “Mining Sequential
Patterns,” Proc. 11th Int’l Conf. Data Eng., pp.
3-14, Mar. 1995.

[3] C.F. Ahmed, S.K. Tanbeer, B.-S. Jeong, and Y.-
K. Lee, “Efficient Tree Structures for High
Utility Pattern Mining in Incremental

Databases,” IEEE Trans. Knowledge and Data
Eng., vol. 21, no. 12, pp. 1708-1721, Dec. 2009.

[4] Jyothi Pillai, O.P.Vyas “Overview of Itemset
Utility Mining and its Applications” IJCA(0975
– 8887) Volume 5– No.11, August 2010

[5] C.H. Cai, A.W.C. Fu, C.H. Cheng, and W.W.
Kwong, “Mining Association Rules with
Weighted Items,” Proc. Int’l Database Eng.
and Applications Symp. (IDEAS ’98), pp. 68-
77, 1998.

[6] J. Han and Y. Fu, “Discovery of Multiple-Level
Association Rules from Large Databases,”

International Journal of Research in Advent Technology, Vol.2, Issue 4, April 2014

E-ISSN: 2321-9637

315

Proc. 21th Int’l Conf. Very Large Data Bases,
pp. 420-431, Sept. 1995.

[7] J. Han, J. Pei, and Y. Yin, “Mining Frequent
Patterns without Candidate Generation,” Proc.
ACM-SIGMOD Int’l Conf. Management of
Data, pp. 1-12, 2000.

[8] J. Pei, J. Han, H. Lu, S. Nishio, S. Tang, and D.
Yang, “H-Mine: Fast and Space-Preserving
Frequent Pattern Mining in Large Databases,”
IIE Trans. Inst. of Industrial Engineers, vol.
39, no. 6, pp. 593-605, June 2007.

[9] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q.
Chen, U. Moal, and M.C. Hsu, “Mining
Sequential Patterns by Pattern-Growth: The
Prefixspan Approach,” IEEE Trans.
Knowledge and Data Eng., vol.16, no.10, pp.
1424-1440, Oct. 2004.

[10] K. Sun and F. Bai, “Mining Weighted
Association Rules without Preassigned
Weights,” IEEE Trans. Knowledge and Data
Eng., vol. 20, no. 4, pp. 489-495, Apr. 2008.

[11] Guo-Cheng Lan, Tzung-Pei Hong, Vincent S.
Tseng “Mining High Transaction-Weighted
Utility Itemsets” IEEE 2010

[12] Chithra Ramaraju, Nickolas Savarimuthu “A
Conditional Tree Based Novel Algorithm for
High Utility Item set Mining” IEEE 2011

 [13] Vincent S. Tseng, Bai-En Shie, Cheng-Wei Wu,
and Philip S. Yu, Fellow, “Efficient
Algorithms for Mining High Utility Itemsets
from Transactional Databases” IEEE
TRANSACTIONS ON KNOWLEDGE AND
DATA ENGINEERING, VOL. 25, NO. 8,
AUGUST 2013.

 [14] IJCSET Volume 3 Issue
1/ijcset2013030104.pdf

 [15] Y. Liu, W. Liao, and A. Choudhary, “A Fast
High Utility Itemsets Mining Algorithm,”
Proc. Utility-Based Data Mining Workshop,
2005.

[16] Frequent Itemset Mining Implementations
Repository, http://fimi.cs.helsinki.fi/, 2013.

[17] IOSRJOURNAL Volume 16Issue 2 Version
1 p016219193.pdf

